Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstraße 30 L 10829 Berlin, Allemagne

Tel.: +49(0)30-78730-0 Fax: +49(0)30-78730-320

e-Mail: dibt@dibt.de

Internet: www.dibt.de

Agrément Technique Européen ATE-08/0341

(Traduction en langue française par Hilti – Version originale en allemand)

Nom commercial

Trade name

Système à injection Hilti HIT-HY 110

Injection System Hilti HIT-HY 110

Titulaire de l'agrément

Holder of approval

Hilti Aktiengesellschaft Business Unit Anchors

9494 Schaan

Principauté du Liechtenstein

Objet de l'agrément

et domaine d'emploi

Cheville à scellement dans les tailles Ø 8 to Ø 30 pour

Bonded anchor in the size of \emptyset 8 to \emptyset 30 for use in non –cracked

ancrage dans le béton non fissuré

Generic type and use

of construction product

Valable du : Validity from

au to

Prolongé Extended du:

au

to

2 décembre 2008

17 mars 2013

concrete

18 mars 2013

18 mars 2018

Usine de production

Manufacturing plant

Usine Hilti

Cet agrément comporte This Approval contains

28 pages, y compris 19 annexes.

28 pages including 19 annexes

European Organisation for Technical Approvals

Europäische Organisation für Technische Zulassungen

I BASES JURIDIQUES ET DIRECTIVES GENERALES

- 1 Le présent agrément technique européen est délivré par le DIBT (Deutsches Institut für Bautechnik = Laboratoire allemand des techniques de construction), conformément :
 - à la directive 89/106/CEE du Conseil en date du 21 décembre 1988 pour l'harmonisation des directives juridiques et administratives des Etats-membres concernant les produits de construction¹, modifiée par la directive 93/68/CEE² et le règlement EC N° 1882/2003 du Parlement Européen et du Conseil³,
 - à la loi sur la mise sur le marché et la libre circulation de produits de construction relative à la mise en œuvre de la directive 89/106/CEE du Conseil en date du 21 décembre 1988 relative à l'harmonisation des directives juridiques et administratives des Etats-membres concernant les produits de construction (loi sur les produits de construction) en date du 28 avril 1998⁴, modifié par article 2 de la loi du 8 Novembre 2011⁵.
 - aux règles de procédures communes de demande, préparation et octroi des agréments techniques européens conformément à l'annexe relative à la décision 94/23/CE de la Commission⁶.
 - au guide d'agrément technique européen de "chevilles métalliques pour béton" Partie 5
 "Chevilles à scellement", ETAG n° 001-05.
- Le DIBT (Deutsches Institut für Bautechnik) est habilité à vérifier si le présent agrément technique européen répond bien à ces directives. Ce contrôle peut être effectué dans l'usine de production. Mais le titulaire de l'agrément technique européen reste toutefois responsable de la bonne conformité des produits avec l'agrément technique européen et de leur aptitude à être utilisés pour le domaine d'emploi prévu.
- La cession du présent agrément technique européen à d'autres fabricants ou représentants de fabricants que ceux indiqués page 1, ou à d'autres usines de production que celles indiquées page 1, n'est pas autorisée.
- 4 Le DIBT (Deutsches Institut für Bautechnik) peut annuler le présent agrément technique européen, notamment après notification de la Commission sur la base de l'article 5, paragraphe 1. de la directive 89/106/CEE.
 - La reproduction du présent agrément technique européen n'est autorisée, même par transmission électronique, que sous sa forme intégrale, sauf accord écrit du DIBT (Deutsches Institut für Bautechnik). Dans le cas d'un tel accord, il doit être clairement indiqué que la reproduction n'est que partielle. L'utilisation de textes et plans de brochures publicitaires n'est pas autorisée s'ils sont en contradiction avec le présent agrément technique européen ou si elle est jugée abusive.
- 6 L'agrément technique européen est délivré par l'organisme d'agrément dans sa langue officielle. Cette version correspond à la version diffusée dans l'EOTA. Toutes traductions dans d'autres langues doivent être clairement indiquées.

Journal Officiel des Communautés Européennes N° L 40, 11 février 1989, page 12

² Journal Officiel des Communautés Européennes N° L 220, 30 août 1993, page 1

Journal Officiel de l'Union Européenne N° L284, 31 octobre 2003, page 25

⁴ Bundesgesetzblatt I 1998, page 812

⁵ Bundesgesetzblatt I 2011, page 2178

Journal Officiel des Communautés Européennes N° L 17, 20 janvier 1994, page 34

II DIRECTIVES SPECIALES DE L'AGREMENT TECHNIQUE EUROPEEN

1 Définition du produit et de son usage prévu

1.1 Définition du produit

Le système à injection Hilti HIT-HY 110 pour non béton fissuré est une cheville à scellement consistant en une cartouche de résine Hilti HIT-HY 110 et un élément en acier.

Les éléments sont en acier électrozingué (HIT-V, HAS-(E) et HIS-N), barres d'armature, en acier inoxydable (HIT-V-R, HAS-(E)R et HIS-RN) ou en acier à haute résistance à la corrosion (tige d'ancrage HIT-V-HCR et HAS-(E)HCR).

L'élément en acier est placé dans un trou foré rempli de résine et ancré via l'adhérence entre l'élément en acier, la résine et le béton.

En annexes 1 et 2 figurent le schéma de la cheville et le domaine d'emploi.

1.2 Usage prévu

Cette cheville est prévue pour des applications qui doivent satisfaire aux exigences de résistance mécanique, de stabilité à long terme et de sécurité d'utilisation au sens des exigences essentielles 1 et 4 de la directive 89/106/CEE et pour lesquelles toute ruine des ancrages mettrait en danger la vie humaine ou la santé et/ou entraînerait de graves conséquences économiques. La sécurité en cas d'incendie (exigence essentielle 2) n'est pas couverte par le présent agrément ATE.

Cette cheville ne peut être utilisée que pour des ancrages sous charge essentiellement statique ou quasi statique, dans du béton normal armé ou non armé, dont la classe de résistance est comprise entre C 20/25 et C 50/60 inclus, conformément à l'EN 206 : 2000-12.

Elle peut être ancrée dans du béton non fissuré.

Cette cheville peut être installée dans du béton sec ou humide. Elle ne doit pas être installée dans un trou inondé d'eau.

Cette cheville peut être utilisée dans les plages suivantes de température :

Plage de température I : - 40 °C à + 40 °C (température max à long terme + 24 °C et température max à court terme + 40 °C)

Plage de température II : - 40 °C à + 80 °C (température max à long terme + 50 °C et température max à court terme + 80 °C)

Plage de température III : - 40 °C à + 120 °C (température max à long terme + 72 °C et température max à court terme + 120 °C)

Éléments en acier électrozingué (tige d'ancrage HIT-V et HAS-(E), douille taraudée HIS-N),

Les éléments en acier électrozingué ou galvanisé à chaud ne peuvent être utilisés que dans des éléments de structure soumis à une ambiance intérieure sèche.

<u>Éléments en acier inoxydable (tige d'ancrage HIT-V-R et HAS-(E)R, douille taraudée HIS-RN)</u>

Les éléments en acier inoxydable 1.4401, 1.4404, 1.4439, 1.4362, 1.4571 ou 1.4578 peuvent être utilisés dans des éléments de structure soumis à une ambiance intérieure sèche ainsi qu'à l'extérieur (y compris atmosphère industrielle et à proximité de la mer) ou dans des locaux humides, pour autant que les conditions ambiantes ne soient pas particulièrement agressives : p. ex. immersion alternée et continue dans l'eau de mer ou zone soumise à des aspersions d'eau de mer, atmosphère contenant du chlore dans les piscines couvertes ou atmosphère soumise à pollution chimique extrême (p. ex. à proximité d'installations de désulfuration de gaz et fumées ou dans des tunnels routiers avec salage l'hiver).

Éléments en acier à haute résistance à la corrosion (tige d'ancrage HIT-V-HCR et HAS-(E)HCR)

Les éléments en acier à haute résistance à la corrosion 1.4529 ou 1.4565 peuvent être utilisés dans des éléments de structure soumis à une ambiance intérieure sèche ainsi qu'à des éléments de structure soumis à une ambiance extérieure, dans des conditions humides permanentes ou autres conditions particulièrement agressives. De telles conditions particulièrement agressives sont par exemple immersion alternée et continue dans l'eau de mer ou zone soumise à des aspersions d'eau de mer, atmosphère contenant du chlore dans les piscines couvertes ou atmosphère soumise à pollution chimique extrême (p. ex. à proximité d'installations de désulfuration de gaz et fumées ou dans des tunnels routiers avec salage l'hiver).

Barres d'armatures

Des barres d'armatures peuvent être utilisées comme des chevilles conçues conformément au rapport technique TR 029⁷ de l'EOTA uniquement. Ces applications sont par exemple les tables de compression, les goujons soumis au cisaillement, ou la connexion d'un mur chargé principalement en cisaillement et compression sur sa fondation, dans les cas où les barres d'armature agissent comme des connecteurs reprenant des charges de cisaillement. Les scellements de barres d'armatures conçus conformément à la norme EN 1992-1-1: 2004 ne sont pas couverts par cet Agrément Technique Européen.

Les exigences du présent agrément technique européen reposent sur l'hypothèse que la durée de vie estimée de la cheville pour l'utilisation prévue est au moins de 50 ans. Les indications relatives à la durée de vie d'une cheville ne peuvent pas être interprétées comme une garantie donnée par le fabricant mais ne doivent être considérées que comme un moyen pour choisir les chevilles qui conviennent à la durée de vie économique raisonnable attendue des ouvrages.

2 Caractéristiques du produit et méthodes de vérification

2.1 Caractéristiques du produit

La cheville est conforme aux plans et indications figurant dans les annexes. Les caractéristiques des matériaux, dimensions et tolérances de la cheville qui ne sont pas indiquées dans les annexes, doivent correspondre aux indications définies dans la documentation technique⁸ du présent Agrément Technique Européen.

Les valeurs caractéristiques des chevilles pour le calcul et le dimensionnement des ancrages sont indiquées dans les annexes.

Les deux composants de la résine Hilti HIT-HY 110 sont livrés non mélangés dans des cartouches souples de 330 ml, 500 ml ou 1400 ml conformément à l'annexe 1.

Chaque cartouche souple et chaque élément est marqué conformément aux spécifications données dans les annexes.

Les éléments barres d'armature doivent être conformes aux spécifications données en annexe 5.

Le marquage de la profondeur d'implantation peut être effectué sur chantier.

2.2 Méthodes de vérification

L'appréciation de l'aptitude de la cheville à l'emploi prévu en fonction des exigences relatives à la résistance mécanique, la stabilité et la sécurité d'utilisation au sens des exigences essentielles 1 et 4, a été effectuée conformément au « Guide d'Agrément Technique Européen relatif aux chevilles métalliques pour béton », partie 1 « Généralités sur les chevilles de fixation » et partie 5 « Chevilles à scellement », sur la base de l'option 7.

Le rapport technique TR 029 « Conception des chevilles à scellement » est publié en anglais sur le site web de l'EOTA <u>www.eota.eu</u>

La documentation technique du présent agrément technique européen est déposées au DIBT (Deutsches Institut für Bautechnik) et, si les organismes notifiés pour la procédure d'attestation de conformité du produit la jugent importante pour leur travail, elle devra leur être présentée

Outre les clauses spécifiques se rapportant aux substances dangereuses contenues dans le présent Agrément Technique Européen, il se peut que d'autres exigences soient applicables aux produits couverts par le domaine d'application de l'ATE (par exemple législation européenne et législations nationales transposées, réglementations et dispositions administratives). Pour être conforme aux dispositions de la Directive Produits de la Construction de l'UE, ces exigences doivent également être satisfaites là où elles s'appliquent.

3 Evaluation de la conformité du produit et marquage CE

3.1 Système d'attestation de conformité

Conformément à la décision 96/582/EC de la Commission Européenne^{9,} le système d'attestation de conformité du produit 2 (i) (également appelé Système 1) d'attestation de la conformité s'applique.

Système 1 : Certification de la conformité du produit par un organisme approuvé de certification basée sur :

- a) tâches du fabricant :
 - (1) contrôle de production en usine,
 - (2) essais supplémentaires sur des échantillons prélevés en usine par le fabricant conformément à un plan d'essais prescrit.
- b) tâches de l'organisme notifié :
 - (3) essais de type initiaux du produit,
 - (4) inspection initiale de l'usine et du contrôle de production en usine,
 - (5) surveillance continue, évaluation et approbation du contrôle de production en usine.

Note: Un organisme approuvé est également appelé un « organisme notifié ».

3.2 Responsabilités

3.2.1 Tâches du fabricant

3.2.1.1 Contrôle de la production en usine

Le fabricant doit exercer un autocontrôle permanent de la production dans son usine. Tous les éléments, exigences et dispositions adoptés par le fabricant doivent être systématiquement transcrits sous forme de documents et de procédures écrites. Ce système de contrôle de la production doit garantir que le produit est bien conforme à l'agrément technique européen.

Le fabricant ne doit utiliser que des matières premières spécifiées dans la documentation technique de cet agrément technique européen.

Le contrôle de production en usine doit être conforme au plan de contrôle de Novembre 2007 qui fait partie de la documentation technique de cet agrément technique européen. Le plan de contrôle est mis en œuvre dans le contexte du système de contrôle de production en usine mis en œuvre par le fabricant et déposé au DIBT¹⁰.

Les résultats du contrôle de la production en usine seront enregistrés et évalués conformément au plan de contrôle.

3.2.1.2 Autres tâches du fabricant

Le fabricant doit, par contrat, impliquer un organisme notifié pour les tâches spécifiées au paragraphe 3.1 dans le domaine des chevilles pour entreprendre les actions spécifiées au paragraphe 3.2.2. A cet effet, le plan d'essai spécifié aux paragraphes 3.2.1.1 et 3.2.2 doit être utilisé par le fabricant et l'organisme notifié.

⁹ Journal Officiel des Communautés Européennes L 254 du 08.10.1996.

Le plan de contrôle est une partie confidentielle de l'agrément technique européen et ne sera remis qu'aux organismes notifiés impliqués dans la procédure d'attestation de conformité du produit. Voir § 3.2.2

Le fabricant doit établir une déclaration de conformité, spécifiant que le produit est bien conforme aux spécifications du présent agrément technique européen.

3.2.2 Tâches des organismes notifiés

L'organisme notifié doit réaliser les tâches suivantes conformément aux spécifications du plan d'essai :

- Essai de type initial du produit
- Inspection initiale de l'usine et du contrôle de la production en usine
- Surveillance continue, évaluation et homologation du contrôle de production en usine.

L'organisme notifié doit retenir les points essentiels de ses actions citées ci-dessus et les résultats obtenus et les conclusions doivent figurer dans un rapport écrit.

L'organisme notifié impliqué par le fabricant doit délivrer un certificat de conformité CE du produit spécifiant la conformité du produit aux spécifications du présent agrément technique européen.

Au cas où les spécifications du présent agrément technique européen et de son "plan d'essai" ne sont plus respectées, l'organisme notifié doit annuler le certificat de conformité et en informer le DIBT (Deutsches Institut für Bautechnik) dans les plus brefs délais.

3.3 Marquage CE

Le marquage CE doit être apposé sur les emballages des chevilles. Le marquage "CE" doit être suivi du numéro d'identification de l'organisme de certification, si approprié, et doit être accompagné des renseignements suivants :

- Le nom et l'adresse du producteur (entité légalement responsable pour le fabricant),
- les deux derniers chiffres de l'année d'apposition du marquage CE,
- le numéro du certificat de conformité CE,
- le numéro de l'Agrément Technique Européen,
- le numéro du guide d'agrément technique européen (ETAG)
- la catégorie d'utilisation (ETAG 001-1 Option 7),
- la taille.

4 Hypothèses selon lesquelles l'aptitude du produit à l'emploi prévu a été évaluée favorablement

4.1 Fabrication

Le présent Agrément Technique Européen est délivré pour le produit sur la base d'informations et de données acceptées et déposées au DIBT, qui identifient le produit qui a été évalué et jugé. Tout changement dans le produit ou le process de production, qui pourrait rendre caduques les informations et données déposées, doit être notifié au DIBT avant introduction de ces changements. Le DIBT décidera de l'influence ou non de ces changements sur l'ATE et par conséquence sur la validité du marquage CE basé sur l'ATE et si une évaluation complémentaire ou des modifications de l'ATE sont nécessaires.

4.2 Conception des ancrages

L'aptitude à l'emploi de la cheville est garantie dans les conditions suivantes :

La conception et le dimensionnement des ancrages doivent être effectués en conformité avec le rapport technique EOTA TR 029 « Conception des chevilles à scellement » 11 sous la responsabilité d'un ingénieur qualifié possédant une expérience approfondie des ancrages et ouvrages en béton.

¹¹

Des barres d'armatures peuvent être utilisées comme des chevilles conçues conformément au rapport technique TR 029 de l'EOTA uniquement. Les hypothèses de base pour la conception selon la théorie des chevilles doivent être observées. Ceci inclut la prise en compte des charges de traction et de cisaillement et les modes de ruine correspondants ainsi que l'hypothèse que le matériau support (élément de structure en béton) reste dans les limites des états limites de service (fissuré ou non fissuré) lorsque l'ancrage est mis en charge. Ces applications sont par exemple les tables de compression, les goujons soumis au cisaillement ou la connexion d'un mur chargé principalement en cisaillement et compression sur sa fondation, dans les cas où les barres d'armature agissent comme des connecteurs reprenant des charges de cisaillement. Les scellements de barres d'armatures conçus conformément à la norme EN 1992-1-1: 2004 (par exemple connexion d'un mur chargé en traction avec le renforcement des fondations) ne sont pas couverts par cet Agrément technique Européen.

Pour les douilles taraudées, les vis ou tiges filetées doivent être en acier électro zingué de classe de résistance minimum 8.8 selon EN ISO 898-1. Les profondeurs de vissage minimum et maximum h_s pour la fixation de la pièce à fixer doivent être conformes au tableau 3 de l'annexe 4. La longueur de la vis de fixation ou de la tige filetée doit être déterminée en fonction de l'épaisseur de la pièce à fixer, des tolérances, de la longueur de filetage et des profondeurs de vissage minimum et maximum h_s .

Tous plans et notes de calcul devront être établis de manière à être vérifiables, compte tenu des charges d'ancrage.

La position des chevilles (par exemple leur position par rapport aux armatures ou aux supports, dans du béton fissuré ou non fissuré, etc.) devra être indiquée avec précision sur les plans.

4.3 Mise en place des chevilles

L'aptitude à l'emploi de la cheville ne pourra être garantie qu'en cas de respect des conditions de pose suivantes :

- Pose par un personnel suffisamment qualifié, sous la surveillance du conducteur des travaux.
- Pose conformément aux indications du fabricant et aux plans, avec l'outillage indiqué dans la documentation technique du présent agrément technique européen.
- Pose de la cheville seulement telle que livrée par le fabricant, sans échange d'éléments constitutifs, quels qu'ils soient.
- Des tiges filetées, écrous et rondelles standard du commerce peuvent également être utilisées si les prescriptions suivantes sont remplies:
 - o matériau, dimensions et propriétés mécaniques des parties métalliques conformes aux spécifications données au tableau 5 de l'annexe 6.
 - Confirmation du matériau et des propriétés mécaniques des parties métalliques par un certificat de conformité 3.1 conformément à l'EN 10204:2004, les documents devront être conservés.
 - o Marquage de la tige filetée avec la profondeur d'implantation envisagée. Ceci peut être effectué par le fabricant de tige ou par une personne sur le chantier.
- Les barres d'armatures doivent être conformes aux spécifications données en Annexe 5.
- Nécessité de vérifier, avant mise en place d'une cheville, que la classe de résistance du béton n'est pas inférieure à celle pour laquelle sont applicables les charges caractéristiques.
- Compactage parfait du béton qui ne doit comporter, par exemple, aucun vide.
- Marquage et respect de la profondeur d'ancrage effective.
- Respect des valeurs définies, sans tolérances négatives pour les distances aux bords et les entraxes.
- Disposition des trous sans abîmer les fers à béton.
- Perçage par perforation avec percussion.
- Dans le cas où un trou est abandonné, il doit être comblé avec du mortier.

- Dans le cas de perçage avec perforateur, la cheville peut être posée dans un trou rempli d'eau (sauf eau de mer).
- Nettoyage des trous conformément aux annexes 7 à 10.
- Pour les applications au plafond, des embouts à injection doivent être utilisés, les éléments ancrés doivent être maintenus pendant le temps de séchage, par exemple avec des coins.
- Pour l'injection de résine dans des trous ≥ 250 mm, des embouts à injection doivent être utilisés.
- La température d'installation de la cheville doit être d'au moins + 5 °C; pendant le durcissement du mortier, la température du béton ne doit pas descendre en dessous de -5 °C; il convient d'observer le temps de séchage conformément au tableau 6 de l'annexe 9 avant de mettre en charge la cheville.
- Les vis d'ancrage ou les tiges filetées (y compris écrous et rondelles) pour les douilles taraudées HIS- (R)N doivent être en nuance d'acier et avoir des propriétés appropriées.
- Le serrage au couple n'est pas nécessaire pour le fonctionnement de la cheville. Néanmoins, le couple de serrage ne doit pas dépasser les valeurs indiquées en annexes 3 et 4 respectivement.

5 Recommandations pour le fabricant

5.1 Responsabilité du fabricant

Le fabricant devra veiller que tous les intervenants soient bien informés des directives spéciales conformément aux paragraphes 1 et 2, y compris des annexes auxquelles il est fait référence, ainsi qu'aux paragraphes 4.2 et 4.3. Le fabricant pourra les informer en reproduisant les parties correspondantes de l'agrément technique européen. Par ailleurs, il devra indiquer toutes les données de pose sur le conditionnement/l'emballage et/ou sur une notice de montage, avec des schémas de préférence.

Devront figurer au moins les indications suivantes :

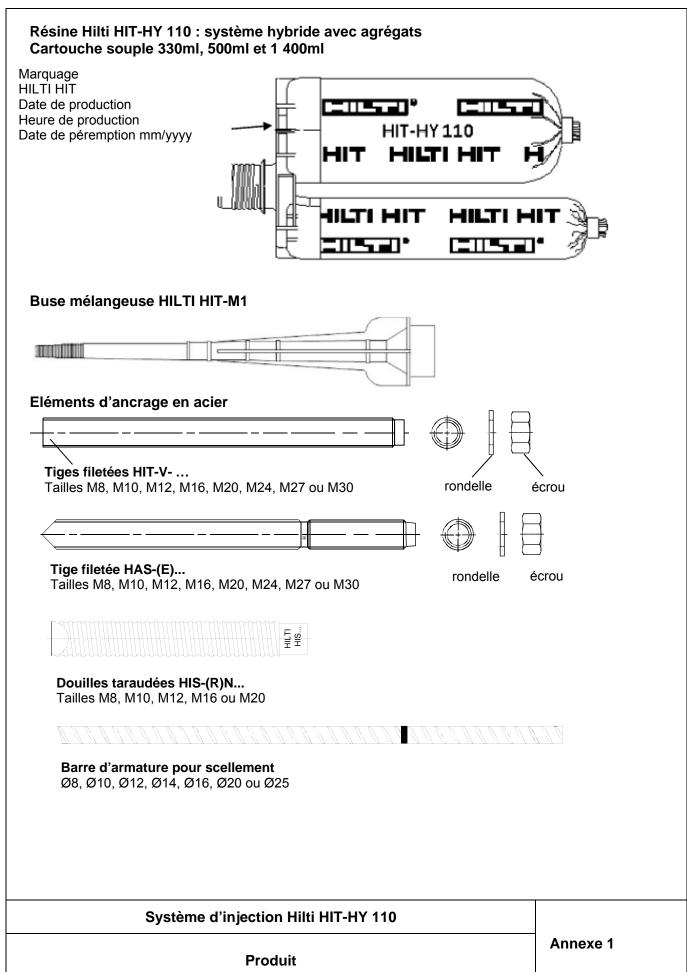
- le diamètre de la mèche,
- la profondeur du trou,
- le diamètre de la tige d'ancrage,
- la profondeur minimale d'implantation,
- information sur la pose, y compris nettoyage du trou, de préférence par une illustration,
- la température de la cheville pendant l'installation,
- la température du support pendant la pose,
- le temps d'ouverture des cartouches,
- le temps de durcissement avant mise en charge, en fonction de la température du béton pendant la pose,
- le couple de serrage maximum,
- le lot de fabrication.

Toutes les indications doivent être parfaitement claires et compréhensibles.

Page 9 sur 28 | 18 mars 2013

Traduction française préparée par Hilti

5.2 Recommandations pour l'emballage, le transport et le stockage


Les cartouches souples doivent être protégées contre les radiations solaires et doivent être stockées conformément aux recommandations du fabricant dans des conditions sèches à des températures comprises entre + 5 °C minimum et + 25 °C maximum.

Les capsules dont la date d'expiration est dépassée ne doivent plus être utilisées.

La cheville doit être emballée et fournie comme un tout, les capsules étant emballées séparément des tiges, écrous et rondelles.

Andreas Kummerow p.o. Chef du département

beglaubigt : Lange

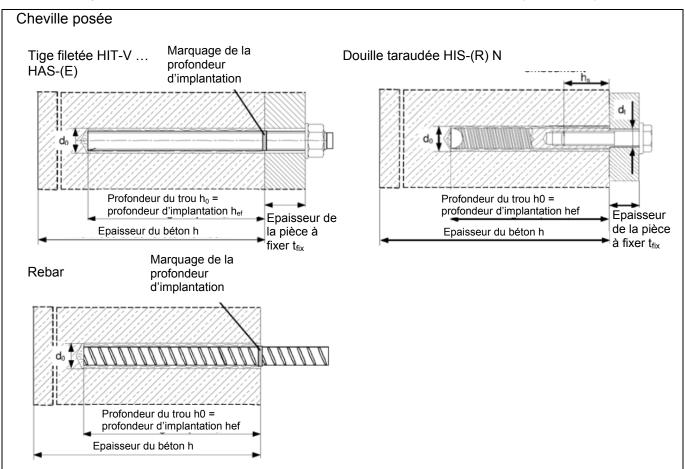


Tableau 1: Catégories d'utilisation

Table	au 1. Categories a utili				1		
		Méthode de perçage	-	С			
		Forage mèche standard	HIT-V	Rebar	HIS-(R)N		
		(2222		121/12/21/21/21/21/21/21/21/21/21/21/21/	**************************************		
Charges statiques et quasi statiques en béton non fissuré		✓	Annexe 11, 12, 13	Annexe 14, 15, 16	Annexe 17, 18, 19		
Usage en	béton sec ou humide	✓	✓	✓	✓		
Températ	ure d'installation	Résine +5°C à +40°C Béton -5°C à +40°C					
Plage de température I :		- 40 °C à + 40 °C	- 40 °C à + 40 °C (température max à long terme + 24 °C Température max à court terme + 40 °C				
rature en	Plage de température II :	- 40 °C à + 80 °C	(température max à long terme + 50 °C et température max à court terme + 80 °C)				
service	Plage de température III :	- 40 °C à + 120 °C		ne + 72 °C et me + 120 °C)			

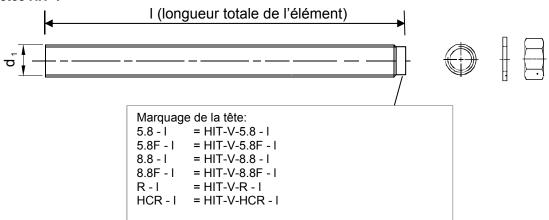
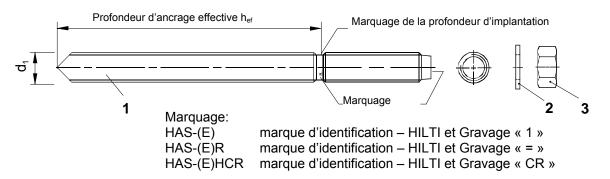
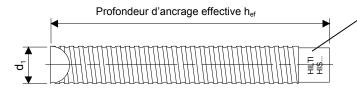

Système d'injection Hilti HIT-HY 110	
Cheville posée et usage prévu	Annexe 2

Tableau 2: Données de pose pour les tiges filetées HIT-V-... et HAS-(E) ...


Tableau Z. Dollilees de	pose	, poui	ies tig	co ilici	CC3 III	1 - V (<u> </u>		
HIT-HY 110 avec HIT-V et HA	AS-(E)		M8	M10	M12	M16	M20	M24	M27	M30
Diamètre de l'élément	d	[mm]	8	10	12	16	20	24	27	30
Profondeur d'ancrage effective	min	[mm]	60	60	70	80	90	100	110	120
h _{ef} et profondeur du trou h₀ pour tige filetée HIT-V		[mm]	160	200	240	320	400	480	540	600
Profondeur d'ancrage effective pour tige filetée HAS-(E)	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Diamètre nominal de mèche	d_0	[mm]	10	12	14	18	24	28	30	35
Diamètre du trou de passage dans la pièce à fixer ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Couple de serrage maximum	T_{max}	[Nm]	10	20	40	80	150	200	270	300
Epaisseur minimale du support	h _{min}	[mm]	h,	_{ef} + 30 m	m		h	_{ef} + 2 x c	d ₀	
Entraxe minimal	S _{min}	[mm]	40	50	60	80	100	120	135	150
Distance au bord minimale	C _{min}	[mm]	40	50	60	80	100	120	135	150

¹⁾ Pour un trou de passage plus large, voir TR029 paragraphe 1 .1


Tige filetée HAS-(E)...

Système d'injection Hilti HIT-HY 110	
Données de pose Tiges filetées HIT-Vet HAS-(E)…	Annexe 3

Tableau 3: Données de pose des douilles taraudées HIS-(R)N

rableau 3. Donnees de pose des dounies taraduces mo-(ny)							
HIT-HY 110 avec HIS-(R)N			M8	M10	M12	M16	M20
Diamètre de la douille	d_1	[mm]	12,5	16,5	20,5	25,4	27,6
Profondeur d'ancrage effective	h _{ef}	[mm]	90	110	125	170	205
Diamètre nominal de mèche	d_0	[mm]	14	18	22	28	32
Profondeur du trou foré	h ₀	[mm]	90	110	125	170	205
Diamètre du trou de passage	d _f	[mm]	9	12	14	18	22
Couple de serrage maximum	T_{max}	[Nm]	10	20	40	80	150
Longueur de vissage mini-maxi	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Epaisseur minimale du support	h _{min}	[mm]	120	150	170	230	270
Entraxe minimal	S _{min}	[mm]	40	45	55	65	90
Distance au bord minimale	C _{min}	[mm]	40	45	55	65	90

Marquage: marque d'identification – HILTI et gravage « HIS-N » (acier au carbone) gravage « HIS-RN » (acier inoxydable)

Système d'injection Hilti HIT-HY 110

Données de pose Douilles taraudées HIT-(R)N

Barre			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32
Diamètre de la barre	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Profondeur d'ancrage effective hef et profondeur du	min	[mm]	60	60	70	75	80	90	100	104	112	120	128
trou h ₀	max	[mm]	160	200	240	280	320	400	500	520	560	600	640
Diamètre nominal de mèche	d_0	[mm]	12	12 14 ¹⁾	14 16 ¹⁾	18	20	25	32	32	35	37	40
Epaisseur minimale du support	h _{min}	[mm]	h _{ef}	+ 30 r	nm				h _{ef} +	2 x d ₀			
Entraxe minimal	S _{min}	[mm]	40	50	60	70	80	100	125	130	140	150	160
Distance au bord minimale	C _{min}	[mm]	40	50	60	70	80	100	125	130	140	150	160

¹⁾ Les deux valeurs données pour le diamètre de mèche peuvent être utilisés.

Barre

Référence à l'EN 1992-1-1 Annexe C Tableau C.1 et C.2N Propriétés des armatures :

Reference a l'EN 1992-1-1 Annexe C Tableau C.1 et C.2N Proprietes des armatures :							
Forme du produit		Barres et fils redressés					
Classe		В	С				
Limite caractéristique d'élas	ticité f _{yk} ou f _{0,2k} (MPa)	400 à	a 600				
Valeur minimale de $k = (f_t / t)$	ý) _k	≥ 1,08 ≥ 1,15 < 1,35					
Valeur caractéristique de la charge maximale, ε _{uk} (%)	déformation relative sous	≥ 5,0	≥ 7,5				
Aptitude au pliage		Essai de pliage/dépliage					
Tolérance maximale vis-à- vis de la masse nominale (barre ou fil individuel) (%)	Dimension nominale de la barre (mm) ≤ 8 > 8	± 6,0 ± 4,5					
Adhérence : Surface projetée des nervures ou verrous, $f_{R,min}$ (détermination selon EN 15630)	Dimension nominale de la barre (mm) 8 to 12 > 12	0,0 0,0					

Hauteur des nervures h_{rib}:

La hauteur des nervures de la barre h_{rib} doit répondre à l'exigence suivante: $0.05 * d \le h_{rib} \le 0.07 * d$ où d = diamètre nominal de la barre

Système d'injection Hilti HIT-HY 110	
Données de pose Barre d'armature	Annexe 5

HIS-RN

Tige filetée

HIT-V-HCR

Ecrou

HAS-(E)HCR Rondelle ISO 7089

EN ISO 4032

Traduction française préparée par Hilti

Désignation	Matériau
Barre d'armature	
Barre	Voir annexe 5
Parties métalliques er	n acier zingué
Tige filetée HIT-V-5.8(F) HAS-(E) M8 à M24	Classe de résistance 5.8, R_m = 500 N/mm²; $R_{p\ 0,2}$ = 400 N/mm², ductilité A5 > 8% acier électro zingué \geq 5 μ m EN ISO 4042 (F) version galvanisée à chaud \geq 45 μ m EN ISO 10684
Tige filetée HIT-V-8.8(F) HAS-(E) M27 et M30	Classe de résistance 8.8, R_m = 500 N/mm²; $R_{p\ 0,2}$ = 640 N/mm², ductilité A5 > 8% acier électro zingué \geq 5 μ m EN ISO 4042 (F) version galvanisée à chaud \geq 45 μ m EN ISO 10684
Rondelle ISO 7089	Acier électro zingué EN ISO 4042; ou galvanisé à chaud EN ISO 10684
Ecrou EN ISO 4032	Classe de résistance 8 ISO 898-2, acier électro zingué ≥ 5µm EN ISO 4042 version galvanisée à chaud ≥ 45µm EN ISO 10684
Douille taraudée ¹⁾ HIS-N	Acier au carbone 1.0718, EN 10277-3 acier électro zingué ≥ 5μm EN ISO 4042
Parties métalliques er	n acier inoxydable
Tige filetée HIT-V-R HAS-(E)R	Pour ≤ M24: classe de résistance 70, R_m = 700 N/mm²; $R_{p0,2}$ = 450 N/mm², ductilité A5 > 8% Pour > M24: classe de résistance 50, , R_m = 500 N/mm²; $R_{p0,2}$ = 210 N/mm², ductilité A5 > 8% acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Rondelle ISO 7089	Acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Ecrou EN ISO 4032	Classe de résistance 70 EN ISO 3506-2 acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Douille taraudée 2)	Acier inoxydable 1 4401 et 1 4571 FN 10088

Pour \leq M20: R_m = 800 N/mm²; R_{p 0,2} = 640 N/mm², ductilité A5 > 8%

Pour > M20: R_m = 700 N/mm²; $R_{p\,0,2}$ = 400 N/mm², ductilité A5 > 8% Acier à haute résistance à la corrosion 1.4529, 1.4565 EN 10088

Acier à haute résistance à la corrosion 1.4529, 1.4565 EN 10088

Acier à haute résistance à la corrosion 1.4529, 1.4565 EN 10088

vis de fixation associée: Classe de résistance 8.8 EN ISO 898-1, ductilité A5 > 8% acier électrozingué $\geq 5 \mu m$ EN ISO 4042

Classe de résistance 70 EN ISO 3506-2

Acier inoxydable 1.4401 et 1.4571 EN 10088

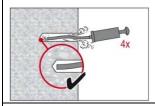
Parties métalliques en acier à haute résistance à la corrosion

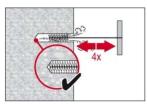
vis de fixation associée: Classe de résistance 70 EN ISO 3506-1, ductilité A5 > 8%

acier inoxydable 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088

Système d'injection Hilti HIT-HY 110	
Matériaux	Annexe 6

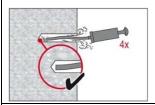
Instruction de pose


Perçage du trou

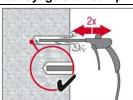

Percer le trou à la profondeur d'implantation requise en utilisant un marteau perforateur en rotation-percussion et une mèche de diamètre approprié.

Nettoyage du trou Avant de poser la cheville, le trou doit être exempt de poussières et de débris

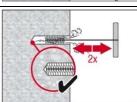
Nettoyage Manuel (MC) pour diamètres de trou $d_0 \le 18$ mm et profondeur du trou $h_0 \le 10$ d



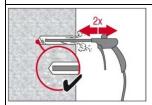
La pompe manuelle peut être utilisée pour nettoyer les trous de diamètre $d_0 \le 18$ mm et une profondeur d'implantation $h_{ef} \le 10d$ ou $h_{ef} \le 160$ mm. Souffler 4 fois à partir du fond du trou jusqu'à ce que le flux d'air sortant soit exempt de poussière notable.


Brosser 4 fois avec l'écouvillon de taille spécifiée (Ø écouvillon ≥ Ø trou, voir tableau 7) en insérant l'écouvillon métallique rond au fond du trou avec un mouvement tournant.

L'écouvillon doit présenter une résistance naturelle à l'entrée dans le trou. Si ce n'est pas le cas, utiliser un nouvel écouvillon ou un écouvillon de diamètre supérieur.


Souffler 4 fois à partir du fond du trou jusqu'à ce que le flux d'air sortant soit exempt de poussière notable.

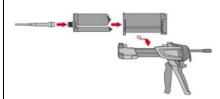
Nettoyage à air comprimé (CAC) pour tous diamètres de trou do et toutes profondeurs d'ancrage ho



Soufflage depuis le fond du trou (si nécessaire avec une extension) avec de l'air comprimé exempt d'huile (minimum 6 bar à 6 m³/h) 2 fois jusqu'à ce que l'air qui ressort soit exempt de poussière notable

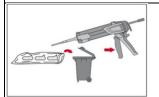
Diamètre du trou ≥ 32 mm le compresseur doit alimenter un débit d'air minimum de 140 m³/heure.

Brossage 2 fois avec l'écouvillon de taille spécifiée (Ø écouvillon ≥ Ø trou, voir tableau 7) en insérant l'écouvillon métallique rond Hilti HIT-RB au fond du trou (si nécessaire utiliser une extension) avec un mouvement tournant. L'écouvillon doit présenter une résistance naturelle à l'entrée dans le trou. Si ce n'est pas le cas, utiliser un nouvel écouvillon ou un écouvillon de diamètre supérieur.



Soufflage 2 fois encore avec de l'air comprimé exempt d'huile jusqu'à ce que l'air qui ressort soit exempt de poussière notable

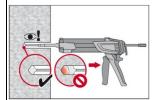
Cuctème	allin in attack	11:14: 1117	117 440
Systeme	d'injection	Hilti Hil.	.HY 11()


Instructions de pose I

Préparation de l'injection

Fixer soigneusement la buse mélangeuse HIT-M1 à la cartouche. Ne pas modifier la buse mélangeuse.

Respecter les instructions d'utilisation de de la pince à injection. Vérifier le porte cartouche. Ne jamais utiliser des cartouches endommagées et/ou des portes cartouches endommagés. Insérer le porte cartouche avec la cartouche dedans dans la pince à injection HIT.

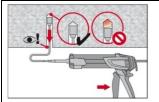


Jeter les premières pressions. La cartouche s'ouvre automatiquement lorsque l'injection commence. En fonction de la taille de la cartouche, les premières pressions doivent être jetées.

Quantités à éliminer: 3 pressions pour cartouche 330ml,

4 pressions pour cartouche 500ml 45 ml pour cartouche 1400ml.

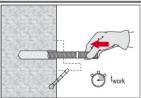
Injection de la résine depuis le fond du trou sans former de bulle d'air



Injecter la résine à partir du fond du trou vers l'extrémité et retirer lentement et progressivement la buse mélangeuse après chaque pression.

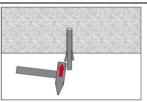
Remplir le trou jusqu'à peu près les 2/3, ou comme demandé pour assurer que l'espace annulaire entre la cheville et le béton soit complètement rempli sur toute la longueur d'implantation.

Après l'injection, dépressuriser la pince en pressant le bouton de verrouillage. Ceci permettra d'éviter de continuer à injecter la résine.

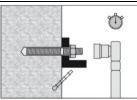

Application au plafond et installation avec des profondeurs h_{ef} > 250mm

Pour les applications au plafond, l'injection n'est possible qu'avec l'aide d'embout à injection et extension. Assembler la buse HIT-M1, les rallonges et l'embout pour injection de taille appropriée (voir tableau 7). Insérer l'embout à injection au fond du trou. Commencer l'injection en laissant la pression de la résine injectée pousser l'embout vers l'extrémité du trou.

Pour les applications sous l'eau, le trou doit être complètement rempli avec la résine.


Instructions de pose II

Pose de l'élément



Avant utilisation, vérifier que les éléments sont secs et exempts d'huile, graisse et autres contaminants.

Marquer et insérer l'élément à la profondeur requise jusqu'à ce que la durée pratique d'utilisation t_{work} se soit écoulée. La durée pratique d'utilisation est donnée dans le tableau 6.

Pour les applications au plafond utiliser les embouts à injection et sécuriser les éléments, par exemple avec des coins HIT-OHW

Mettre en charge la cheville:

Après le temps de durcissement t_{cure} (voir tableau 6) la cheville peut être mise en charge.

Le couple de serrage appliqué ne doit pas excéder les valeurs T_{max} données dans les tableaux 2 et 3.

Tableau 6: Durée pratique d'utilisation twork et temps de durcissement tcure

rabicad of Barce pratique a utilisation twork of temps ac adioissement teure									
Température du matériau support	Durée pratique d'utilisation maximum "t _{work} "	Temps de séchage minimum "t _{cure} "							
-5 à -1	90 min	9 h							
0 à + 4	45 min	4,5 h							
+ 5 à + 9	25 min	2 h							
+ 10 à + 19	6 min	90 min							
+ 20 à + 29	4 min	50 min							
+ 30 à + 40	2 min	40 min							

Le temps de séchage est valide pour béton sec uniquement. Pour béton humide, le temps de séchage doit être doublé.

Système d'injection Hilti HIT-HY 110

Instructions de pose III

Durée pratique d'utilisation et temps de séchage

Tableau 7: Accessoires pour la pose en fonction du diamètre

	Eléments	pour iu pood	Perçage et	nettoyage	Injection		
HIT-V	HIS-N	Rebar	Marteau perforateur TE-C, TE-Y	Ecouvillon	Embout pour injection		
		******	~~~~				
[mm]	[mm]	[mm]	d ₀ [mm]	HIT-RB	HIT-SZ		
8	-	8	10	10	-		
10	-	8/10	12	12	12		
12	8	10/12	14	14	14		
-	-	12	16	16	16		
16	10	14	18	18	18		
-	-	16	20	20	20		
20	12	-	22	22	22		
-	-	20	25	25	25		
24	16	-	28	28	28		
27	-	-	30	30	30		
-	20	25	32	32	32		
30	-	28	35	35	35		

Procédures de nettoyage possibles :

Nettoyage manuel (MC): Pompe manuelle Hilti pour nettoyer les trous de diamètre $d_0 \le 200$ mm et une profondeur d'implantation $h_{ef} \le 10$.	
Nettoyage à air comprimé (CAC): Pistolet à air comprimé recommandé avec une ouverture de l'orifice de diamètre 3,5 mm minimum.	

Système d'injection Hilti HIT-HY 110	1
Accessoires pour la pose en fonction du diamètre	Annexe 10

	caractéristiques es filetées HIT-V			e sou	s chai	rges d	e trac	tion	
HIT-HY 110 avec HIT-V et HAS-(E)	M8	M10	M12	M16	M20	M24	M27	M30
Rupture de l'acier HIT-V		ı		I		I		I	I
Résistance carac. HIT-V-5.8 (F)	N _{Rk,s} [kN]	18	29	42	79	123	177	230	281
Résistance carac. HIT-V-8.8 (F)	N _{Rks} [kN]	29	46	67	126	196	282	367	449
Coefficient partiel de sécurité	γ _{Ms,N} [-]				1	,5		•	•
Résistance carac. HIT-V-R	N _{Rk,s} [kN]	26	41	59	110	172	247	230	281
Coefficient partiel de sécurité	γ _{Ms,N} 1) [-]		•	1,	87		•	2,	86
Résistance carac. HIT-V-HCR	N _{Rk,s} [kN]	29	46	67	126	196	247	321	393
Coefficient partiel de sécurité	γ _{Ms,N} 1) [-]		•	1,5	•	•		2,1	
Rupture de l'acier HAS-(E)	· · · · · · · · · · · · · · · · · · ·	I					I		
Résistance carac. HAS	N _{Rk,s} [kN]	17	26	38	72	112	160	347	422
Coefficient partiel de sécurité	γ _{Ms,N} 1) [-]				1	,5		•	•
Résistance carac. HAS-R	N _{Rk,s} [kN]	23	37	53	101	157	224	217	263
Coefficient partiel de sécurité	γ _{Ms,N} [-]		1,87				•	2,86	
Résistance carac. HAS-HCR	N _{Rk,s} [kN]	27	42	61	115	180	224	304	369
Coefficient partiel de sécurité	γ _{Ms,N} [-]		•	1,5	•	•		2,1	
Rupture combinée par extraction		cône d	e béton	5)					
Diamètre de la tige	d [mm]	8	10	12	16	20	24	27	30
Adhérence caractéristique dans le	béton non fissuré C2	0/25	•		•		•	·	
Températures I ⁶⁾ : 40°C / 24°C	τ _{Rk,ucr} [N/mm²]	11	11	11	9	8,5	8	7,5	7
Températures II ⁶⁾ : 80°C / 50°C	τ _{Rk,ucr} [N/mm²]	7,5	7,5	7,5	6	5,5	5	5	5
Températures III ⁶⁾ : 120°C /72°C	τ _{Rk,ucr} [N/mm²]	6,5	6,5	6,5	5	5	4,5	4	4
-	C30/37				1,	06		I	I
Facteurs d'augmentation de $\tau_{Rk,p}$	ψ _c C40/50	1,11							
,	C50/60				1,	14			
Rupture par fendage									
	h / h _{ef} ⁷⁾ ≥ 2,0		1,0 h _{ef}		h/h _{ef}				
Distance au bord c _{cr,sp} [mm] pour —	$2.0 > h / h_{ef}^{7)} > 1.3$	4,6	h _{ef} - 1,8	h	2,0				
$h / h_{ef}^{7)} \le 1,3$		2.26 h _{ef}				c _{cr,s}	p		
Entraxe $s_{cr,sp}$ [mm] $2 c_{cr,sp}$									
Coefficient partiel de sécurité pour									
Coefficient partiel de sécurité γ_{Mp} =	$\gamma_{Mc} = \gamma_{Msp}^{1)}$ [mm]	1,5 ²⁾	1,	8 ³⁾			2,1 ⁴⁾		

- 1) En absence de réglementation nationale
- 2) Le coefficient partiel de sécurité γ_2 = 1,0 est inclus.
- 3) Le coefficient partiel de sécurité γ_2 = 1,2 est inclus.
- 4) Le coefficient partiel de sécurité γ_2 = 1,4 est inclus.
- 5) Pour le calcul de la rupture par cône de béton et par fendage, voir § 4.2
- 5) Pour le calcul de la ru
 6) Explication voir § 1.2
 7) h ... épaisseur de bé
- 7) h ... épaisseur de béton, h_{ef} profondeur d'ancrage effective

Système d'injection Hilti HIT-HY 110

Valeurs caractéristiques de résistances sous charges de traction pour tiges filetées HIT-V- et HAS-(E)

Tableau 9: Valeurs caractéristiques de résistance sous charges de cisaillement pour tiges filetées HIT-V et HAS-(E)										
HIT-HY 110 avec HIT-V et HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Rupture de l'acier sans bras de levi	ier									
Résistance carac. HIT-V-5.8 (F)	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Résistance carac. HIT-V-8.8 (F)	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Résistance carac. HIT-V-R	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Résistance carac. HIT-V-HCR	$V_{Rk,s}$	[kN]	15	23	34	63	98	124	161	196
Résistance carac. HAS	$V_{Rk,s}$	[kN]	8,5	13	19	36	56	80	174	211
Résistance carac. HAS-R	$V_{Rk,s}$	[kN]	12	19	27	51	79	112	108	132
Résistance carac. HAS-HCR	$V_{Rk,s}$	[kN]	13	21	31	58	90	112	152	184
Rupture de l'acier avec bras de levier										
Résistance carac. HIT-V-5.8 (F)	$M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Résistance carac. HIT-V-8.8 (F)	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898	1332	1799
Résistance carac. HIT-V-R	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	786	832	1124
Résistance carac. HIT-V-HCR	$M^0_{Rk,s}$	[Nm]	30	60	105	266	520	786	1165	1574
Résistance carac. HAS	$M^0_{Rk,s}$	[Nm]	16	33	56	147	284	486	1223	1637
Résistance carac. HAS-R	$M^0_{Rk,s}$	[Nm]	23	45	79	205	398	680	764	1023
Résistance carac. HAS-HCR	$M^0_{Rk,s}$	[Nm]	26	52	90	234	455	680	1070	1433
Coefficient partiel de sécurité pour	la rupture	e acier								
HIT-V 5.8 ou HIT-V 8.8 (F) ou HAS	$\gamma_{\text{Ms,V}}$ 1)	[-]				1,	25			
HIT-V-R ou HAS-R	$\gamma_{Ms,V}$ 1)	[-]			1,	56			2,	38
HIT-V-HCR ou HAS-HCR	$\gamma_{Ms,V}$ 1)	[-]	1,25 1,75							
Rupture du béton par effet de levier										
Facteur dans l'équation (5.7) du TR 029 sur la conception des chevilles à scellement	k	[-]	2,0							
Coefficient partiel de sécurité	γ _{Mcp} 1)	[-]	1,5 ²⁾							
Rupture du béton en bord de dalle										
Voir chapitre 5.2.3.4 du TR 029 sur la	conceptio	n des ch	evilles	à scelle	ment					
Coefficient partiel de sécurité	γ _{Mc} ¹⁾	[-]				1,	5 ²⁾			

- En l'absence de réglementation nationale
 Le coefficient partiel de sécurité γ₂ = 1,0 est inclus.
 Selon § 4.2.2 seules des tiges dont la ductilité A5 est supérieure à 8% (voir tableau 5) peuvent être utilisées.

Système d'injection Hilti HIT-HY 110	
Valeurs caractéristiques de résistances sous charges de cisaillement pour tiges filetées HIT-V- et HAS-(E)	Annexe 12

Tableau 10:	Déplacement sous charges de traction 1) pour tiges filetées
	HIT-V et HAS-(E)

HIT-HY 110 avec HIT-V et HAS-(E)			M10	M12	M16	M20	M24	M27	M30	
Béton non fissuré – Plage de température ²⁾ 40°C / 24°C										
Déplacement	δ_{N0} [mm/(N/mm ²)]	0,03	0,03	0,03	0,04	0,05	0,05	0,06	0,06	
Déplacement	$\delta_{N\infty}$ [mm/(N/mm ²)]	0,08	0,09	0,10	0,12	0,14	0,16	0,17	0,19	
Béton non fissuré – Pl	Béton non fissuré – Plage de température ²⁾ 80°C / 50°C									
Déplacement	δ_{N0} [mm/(N/mm ²)]	0,04	0,04	0,05	0,05	0,06	0,06	0,07	0,07	
Déplacement	$\delta_{N\infty}$ [mm/(N/mm ²)]	0,10	0,11	0,12	0,14	0,16	0,18	0,20	0,21	
Béton non fissuré – Plage de température ²⁾ 120°C / 72°C										
Déplacement	δ_{N0} [mm/(N/mm ²)]	0,04	0,05	0,05	0,06	0,06	0,07	0,07	0,08	
Déplacement	$\delta_{N\infty}$ [mm/(N/mm ²)]	0,13	0,14	0,15	0,17	0,19	0,21	0,22	0,24	

¹⁾ Calcul de déplacement sous charge courante: τ_{Sd} contrainte d'adhérence due aux actions Déplacement sous charge court terme = $\delta_{N0}^{\bullet}\tau_{Sd}/1,4$ Déplacement sous charge long terme = $\delta_{N\infty}^{\bullet}\tau_{Sd}/1,4$

2) Explications voir chapitre 1.2

Tableau 11: Déplacement sous charges de cisaillement ¹⁾ pour tiges filetées HIT-V et HAS-(E)

HIT-HY 110 avec HIT-V et HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Déplacement	δ_{V0}	[mm/kN]	0,09	0,07	0,06	0,05	0,04	0,03	0,03	0,02
Déplacement	δ_{V^∞}	[mm/kN]	0,14	0,11	0,09	0,07	0,06	0,05	0,04	0,04

1) Calcul de déplacement sous charge courante: V_{Sd} : valeur de calcul des actions de cisaillement Déplacement sous charge court terme = δ_{V0} • V_{Sd} /1,4 Déplacement sous charge long terme = $\delta_{V\infty}$ • V_{Sd} /1,4

Système d'injection Hilti HIT-HY 110	
Déplacements des tiges filetées HIT-V et HAS-(E)	Annexe 13

Tableau 12:	Valeurs caractéristiques de résistance sous charges de traction
	pour barre d'armature

pou	Dane	u uii	Hatuic		1	1		1	1	
HIT-HY 110 avec ba	arre d'arm	nature	•	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Rupture de l'acier										
Résistance caractéristique p barre B500B selon DIN 488 :2009-08 ²⁾		I _{Rk,s}	[kN]	28	43	62	85	111	173	270
Coefficient partiel de sécurité barre B500B selon DIN 488 :2009-08 3)	•	1) Ms,N	[-]				1,4			
Rupture combinée par ext	raction-gl	isser	nent et p	oar cône	de bétor	1 ⁷⁾				
Diamètre de la tige	d	1	[mm]	8	10	12	14	16	20	25
Adhérence caractéristique o	lans le bét	ton no	on fissuré	C20/25						
Températures I ⁸⁾ : 40°C / 24°	°C τ _ι	Rk,ucr[N	N/mm²]	8,5	8,5	8,5	7,5	7,5	7,5	7,5
Températures II ⁸⁾ : 80°C / 50)°C τ _ι	Rk,ucr[N	N/mm²]	6	6	6	5	5	5	5
Températures III ⁸⁾ : 120°C / 8	80°C τ _ι	Rk,ucr[N	N/mm²]	5	5	5	4,5	4,5	4,5	4,5
		(C30/37		l.	•	1,06	•		
Facteurs d'augmentation de	$\tau_{Rk,p}$ ψ	_{'c} (C40/50				1,11			
		(C50/60				1,14			
Rupture par fendage 7)				•						
	ı	n / h _{ef}	⁹⁾ ≥ 2,0		1,0 h _{ef}		h/h _{ef}			
Distance au bord c _{cr,sp} [mm] pour	2,0 > 1	n / h _{ef}	⁹⁾ > 1,3	4,6	h _{ef} - 1,8 h		1,3			
	h	/ h _{ef}	⁹⁾ ≤ 1,3	2	,26 h _{ef}		1	1,0·h _{ef}	2,26·h _{ef} c	cr,sp
Entraxe	S	cr,sp	[mm]				2 c _{cr,sp}			
Coefficient partiel de sécurité p	our rupture	comb	inée, rupt	ure par côi			e par fend	age, forag	e avec :	
Mèche creuse Hilti γ	$\gamma_{Mp} = \gamma_{Mc} =$	γ _{Msp} 1	¹⁾ [mm]	1,5 ⁴⁾	1,8	8 ⁵⁾		2,	1 ⁶⁾	

- l) En absence de réglementation nationale
- 2) Les résistances caractéristiques en traction $N_{Rk,s}$ des fers à béton non conformes à la DIN 488 doivent être calculés selon l'équation (5.1) du rapport technique EOTA TR 029.
- Les coefficients partiels de sécurité en traction γ_{Ms,N} des fers à béton non conformes à la DIN 488 doivent être calculés selon l'équation (3.3.a) du rapport technique EOTA TR 029.
- 4) Le coefficient partiel de sécurité γ_2 = 1,0 est inclus.
- 5) Le coefficient partiel de sécurité γ_2 = 1,2 est inclus.
- 6) Le coefficient partiel de sécurité γ_2 = 1,4 est inclus.
- 7) Pour le calcul de la rupture par cône de béton et par fendage, voir § 4.2.1
- 8) Explication voir § 1.2
- 9) h =épaisseur de béton, $h_{ef} =$ profondeur d'ancrage effective

Système d'injection Hilti HIT-HY 110

		éristiqu armatur		ésistan	ce sous	charge	es de c	isaillem	ent
HIT-HY 110 avec barre d'armat	ure		Ø 8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Rupture de l'acier sans bras de levier									
Résistance caractéristique pour barre B500B selon DIN 488 :2009-08 3)	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135
Rupture de l'acier avec bras de	elevier								
Résistance caractéristique pour barre B500B selon DIN 488 :2009-08 4)	M ⁰ _{Rk,s}	[Nm]	33	65	112	178	265	518	1012
Coefficient partiel de sécurité p	oour la ru	ıpture aci	er						
Coefficient partiel de sécurité pour barre B500B selon DIN 488 :2009-08 ⁵⁾	γ _{Ms,V} 1)	[-]				1,5			
Rupture du béton par effet de l	evier								
Facteur dans l'équation (5.7) du TR 029 sur la conception des chevilles à scellement	k	[-]				2,0			
Coefficient partiel de sécurité	γ _{Mcp} 1)	[-]				1,5 ²⁾			
Rupture du béton en bord de d	Rupture du béton en bord de dalle								
Voir chapitre 5.2.3.4 du TR 029 s	Voir chapitre 5.2.3.4 du TR 029 sur la conception des chevilles à scellement								
Coefficient partiel de sécurité	γ _{Mc} ¹⁾	[-]		-	-	1,5 ²⁾	-	-	

- 1) En absence de réglementation nationale
- 2) Le coefficient partiel de sécurité γ_2 = 1,0 est inclus.
- Les résistances caractéristiques en traction V_{Rk,s} des fers à béton non conformes à la DIN 488 doivent être calculés selon l'équation (5.5) du rapport technique EOTA TR 029.
- Les moments caractéristiques en traction M_{Rk,s} des fers à béton non conformes à la DIN 488 doivent être calculés selon l'équation (5.6b) du rapport technique EOTA TR 029.
- 5) Les coefficients partiels de sécurité en traction $\gamma_{Ms,V}$ des fers à béton non conformes à la DIN 488 doivent être calculés selon l'équation (3.3 b) ou (3.3 c) du rapport technique EOTA TR 029.

	Système d'injection Hilti HIT-HY 110	
Valeu	rs caractéristiques de résistances sous charges de cisaillement pour barres d'armature	Annexe 15

Tableau 14: Déplacement sous charges de traction 1)

HIT-HY 110 avec ba	Ø 8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25		
Béton non fissuré – Plage de température ²⁾ 40°C / 24°C									
Déplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,03	0,03	0,04	0,04	0,05	0,05
Déplacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,08	0,09	0,10	0,11	0,12	0,14	0,16
Béton non fissuré – Plage de température ²⁾ 80°C / 50°C									
Déplacement	δ_{N0}	[mm/(N/mm²)]	0,04	0,04	0,05	0,05	0,05	0,06	0,07
Déplacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14	0,16	0,19
Béton non fissuré -	Plage de	e température ²⁾	120°C / 7	2°C					
Déplacement	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,05	0,05	0,06	0,06	0,07
Déplacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,13	0,14	0,15	0,16	0,17	0,19	0,21

¹⁾ Calcul de déplacement sous charge courante: τ_{Sd} : contrainte d'adhérence due aux actions Déplacement sous charge court terme = $\delta_{N0} \cdot \tau_{Sd} / 1,4$ Déplacement sous charge long terme = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4$

2) Explication voir chapitre 1.2

Tableau 15: Déplacement sous charges de cisaillement 1)

HIT-HY 110 avec barre			Ø 8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Déplacement	δ_{V0}	[mm/kN]	0,09	0,07	0,06	0,05	0,05	0,04	0,03
Déplacement	δ_{V^∞}	[mm/kN]	0,14	0,11	0,09	0,08	0,07	0,06	0,05

1) Calcul de déplacement sous charge courante: V_{Sd} : valeur de calcul des actions de cisaillement Déplacement sous charge court terme = δ_{V0} • V_{Sd} /1,4 Déplacement sous charge long terme = $\delta_{V\infty}$ • V_{Sd} /1,4

Système d'injection Hilti HIT-HY 110	
Déplacements pour barres d'armature	Aı

			es de résis s HIS-(R)I		x charges	de tractio	n	
HIT-HY 110 avec HIS-(R)N			M8	M10	M12	M16	M20	
Rupture de l'acier		<u>.</u>						
Résistance caractéristique HIS-N avec vis classe 8.8	$N_{Rk,s}$	[kN]	25	46	67	118	109	
Coefficient partiel de sécurité	γ _{Ms,N} 1)	[-]	1,43	1,	50	1,	47	
Résistance caractéristique HIS-RN avec vis classe 70	$N_{Rk,s}$	[kN]	26	41	59	110	166	
Coefficient partiel de sécurité	γ _{Ms,N} 1)	[-]		1,	87		2,4	
Rupture combinée par extractio		ment et p	ar cône de	béton ^{4) 7)}				
Profondeur d'ancrage effective	h _{ef}	[mm]	90	110	125	170	205	
Diamètre de l'élément	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6	
Adhérence caractéristique dans le	béton n	on fissuré	C20/25					
Températures I ⁵⁾ : 40°C / 24°C	$N_{\text{Rk,ucr}}^{7)}$	[N/mm²]	35	40	60	115	140	
Températures II ⁵⁾ : 80°C / 50°C	N _{Rk,ucr} ⁷⁾	[N/mm²]	20	30	40	75	95	
Températures III ⁵⁾ : 120°C / 72°C	N _{Rk,ucr} ⁷⁾	[N/mm²]	16	20	30	50	60	
		C30/37			1,06			
Facteurs d'augmentation de $N_{\text{Rk},p}$	Ψc	C40/50	1,11					
		C50/60			1,14			
Rupture par fendage 4) 7)		<u>.</u>						
	h / h	ef ⁶⁾ ≥ 2,0	1,0	h _{ef}	h/h _{ef} -			
Distance au bord c _{cr,sp} 2 [mm] pour	,0 > h / h	ef ⁶⁾ > 1,3	4,6 h _{ef}	– 1,8 h	1,3 -			
	h / h	ef ⁶⁾ ≤ 1,3	2,26	6 h _{ef}	 	1,0·h _{ef} 2,26·l	C _{cr,sp}	
Entraxe	S _{cr,sp}	[mm]			2 c _{cr,sp}			
Coefficient partiel de sécurité pour	rupture c	ombinée, r	upture par c	ône de béton	et rupture pa	r fendage		

1) En absence de réglementation nationale

2) Le coefficient partiel de sécurité γ_2 = 1,0 est inclus.

Coefficient partiel de sécurité $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{1}$ [mm]

- 3) Le coefficient partiel de sécurité γ_2 = 1,2 est inclus.
- 4) Pour le calcul de la rupture par cône de béton et par fendage, voir § 4.2
- 5) Explication voir § 1.2
- 6) h ... épaisseur de béton, hef profondeur d'ancrage effective
- 7) Pour le calcul selon TR 029, l'adhérence caractéristique peut être calculée à partir de la résistance caractéristique en traction pour la rupture combinée par extraction-glissement et par cône de béton selon $\tau_{Rk} = N_{Rk} / (h_{ef} \cdot d_1 \cdot \pi)$

	Système d'injection Hilti HIT-HY 110	
Valeurs cara	actéristiques de résistances aux charges de traction pour douilles taraudées HIS-(R)N	Annexe 17

Valeurs caractéristiques de résistance aux charges de cisaillement pour douilles taraudées HIS-(R)N Tableau 17:

pour a	oumes t	.arauuee	:S ПІЗ-(К)	N				
HIT-HY 110 avec HIS-(R)N			M8	M10	M12	M16	M20	
Rupture de l'acier sans bras o	le levier ³⁾							
Résistance caractéristique HIS-N, vis classe 8.8	$V_{Rk,s}$	[kN]	13	23	39	59	55	
Coefficient partiel de sécurité	$\gamma_{Ms,V}$ 1)	[-]	1,	25		1,5		
Résistance caractéristique HIS-RN, vis classe 70	$V_{Rk,s}$	[kN]	13	20	30	55	83	
Coefficient partiel de sécurité	γ _{Ms,V} 1)	[-]		1,	56	•	2,0	
Rupture de l'acier avec bras d								
Résistance caractéristique HIS-N, vis classe 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	
Coefficient partiel de sécurité	γ _{Ms,V} 1)	[-]			1,25			
Résistance caractéristique HIS-RN, vis classe 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	
Coefficient partiel de sécurité	γ _{Ms,V} 1)	[-]			1,56			
Rupture du béton par effet de								
Facteur dans l'équation (5.7) du TR 029 sur la conception des chevilles à scellement	k	[-]			2,0			
Coefficient partiel de sécurité	γ _{Mcp} 1)	[-]	1,5 ²⁾					
Rupture du béton en bord de	dalle							
Voir chapitre 5.2.3.4 du TR 029	sur la con	ception de	s chevilles à	scellement				
Coefficient partiel de sécurité	γ _{Mc} ¹⁾	[-]			1,5 ²⁾			

- 1) En l'absence de réglementation nationale
- 2) Le coefficient partiel de sécurité γ₂ = 1,0 est inclus.
 3) Selon § 4.2.2. seules des tiges dont la ductilité A5 est supérieure à 8% (voir tableau 5) peuvent être utilisées.

Système d'injection Hilti HIT-HY 110	
Valeurs caractéristiques de résistances aux charges de cisaillement pour douilles taraudées HIS-(R)N	Annexe 18

Tableau 18: Déplacement sous charges de traction ¹⁾ pour douilles taraudées HIS-(R)N

HIT-HY 110 avec HIS-(F	М8	M10	M12	M16	M20			
Béton non fissuré – Plage de température ²⁾ 40°C / 24°C								
Déplacement	δ_{N0}	[mm/(10 kN)]	0,17	0,13	0,10	0,07	0,06	
Déplacement	δ_{N^∞}	[mm/(10 kN)]	0,45	0,35	0,28	0,20	0,15	
Béton non fissuré – Plage de température ²⁾ 80°C / 50°C								
Déplacement	δ_{N0}	[mm/(10 kN)]	0,17	0,13	0,10	0,07	0,06	
Déplacement	δ_{N^∞}	[mm/(10 kN)]	0,45	0,35	0,28	0,20	0,15	
Béton non fissuré – Pla	age de temp	pérature ²⁾ 120°C	C / 72°C					
Déplacement	δ_{N0}	[mm/(10 kN)]	0,19	0,15	0,12	0,08	0,06	
Déplacement	δ_{N^∞}	[mm/(10 kN)]	0,55	0,41	0,32	0,22	0,16	

- 1) Calcul de déplacement sous charge courante: τ_{Sd} : contrainte d'adhérence due aux actions Déplacement sous charge court terme = $\delta_{N0} \cdot \tau_{Sd} / 1,4$ Déplacement sous charge long terme = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4$
- 2) Explication voir chapitre 1.2.

Tableau 19: Déplacement sous charges de cisaillement ¹⁾ pour douilles taraudées HIS-(R)N

HIT-HY 110 avec HIS-(R)N			M8	M10	M12	M16	M20
Déplacement	δ_{V0}	[mm/kN]	0,08	0,07	0,07	0,05	0,05
Déplacement	$\delta_{V^{\infty}}$	[mm/kN]	0,13	0,11	0,10	0,08	0,07

1) Calcul de déplacement sous charge courante: V_{Sd} : valeur de calcul des actions de cisaillement Déplacement sous charge court terme = δ_{V0} • V_{Sd} /1,4 Déplacement sous charge long terme = $\delta_{V\infty}$ • V_{Sd} /1,4

Système d'injection Hilti HIT-HY 110		
Déplacements pour douilles taraudées HIS-(R)N	Annexe 19	